RSTA Code of Practice for Slurry surfacing incorporating Microsurfacing

CODE OF PRACTICE FOR SLURRY SURFACING INCORPORATING MICROSURFACING

Machine applied Microsurfacing

Hand applied Slurry surfacing
Foreword

This second edition of the Code of Practice has been produced by the RSTA Slurry surfacing Committee. It has been reviewed in the context of the European Standard for Slurry surfacing BSEN 12273 published in 2008 along with the national guidance document PD6689:2009.

Throughout the document the term 'Slurry surfacing' also includes Microsurfacing and Microasphalt.

This document has been peer reviewed by ADEPT Soils, Materials, Design and Specifications Committee.

The information contained herein is intended to represent industry best practice. No liability is accepted by RSTA or ADEPT for any damages caused to property or personal injury resulting from using the guidance contained within this document.

RSTA is the Road Surface Treatments Association www.rsta-uk.org

ADEPT is the Association of Directors of Environment, Economy, Planning and Transport www.adepnet.org.UK
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>4</td>
</tr>
<tr>
<td>General</td>
<td>4</td>
</tr>
<tr>
<td>Health, Safety and Environment</td>
<td>4</td>
</tr>
<tr>
<td>Training</td>
<td>5</td>
</tr>
<tr>
<td>QA</td>
<td>5</td>
</tr>
<tr>
<td>Planning and Coordination</td>
<td>6</td>
</tr>
<tr>
<td>Defining the Site and It’s Characteristics</td>
<td>6</td>
</tr>
<tr>
<td>Determining the Specification</td>
<td>6</td>
</tr>
<tr>
<td>Site Information</td>
<td>7</td>
</tr>
<tr>
<td>Planning and Execution</td>
<td>8</td>
</tr>
<tr>
<td>Controlling Material Installation</td>
<td>8</td>
</tr>
<tr>
<td>Joints</td>
<td>12</td>
</tr>
<tr>
<td>Traffic Management</td>
<td>12</td>
</tr>
<tr>
<td>Road Preparation</td>
<td>15</td>
</tr>
<tr>
<td>Binders</td>
<td>15</td>
</tr>
<tr>
<td>Aggregates</td>
<td>15</td>
</tr>
<tr>
<td>Rollers and Rolling</td>
<td>15</td>
</tr>
<tr>
<td>Surface Preparation Sweepers and Sweeping</td>
<td>15</td>
</tr>
<tr>
<td>All Plant</td>
<td>15</td>
</tr>
<tr>
<td>Method of Working</td>
<td>16</td>
</tr>
<tr>
<td>Aftercare</td>
<td>16</td>
</tr>
<tr>
<td>Hand Application of Slurry surfacing</td>
<td>17</td>
</tr>
<tr>
<td>Training and Quality Assurance</td>
<td>18</td>
</tr>
<tr>
<td>End Product Specification Contracts</td>
<td>18</td>
</tr>
<tr>
<td>TAIT’s</td>
<td>19</td>
</tr>
<tr>
<td>Appendix A - Checklists</td>
<td>20</td>
</tr>
<tr>
<td>Appendix B - Glossary</td>
<td>21</td>
</tr>
<tr>
<td>Appendix C - References</td>
<td>28</td>
</tr>
<tr>
<td>Appendix D – Feedback Form</td>
<td>30</td>
</tr>
<tr>
<td>Appendix E – Document Control</td>
<td>31</td>
</tr>
</tbody>
</table>
1 PREAMBLE

1.1 General

To the highway engineer, Slurry surfacing offers a quick, efficient and cost effective way of maintaining skid resistance and protecting roads against the damaging effects of water and air. To obtain the best results it is necessary to give careful consideration to a wide range of detail and to plan and design the work carefully. The speed of the Slurry surfacing operation and the short duration of time during which motorists are inconvenienced is also an important issue.

The purpose of Slurry surfacing is to re-profile the road surface, to provide texture, skid resistance and prevent the ingress of water and air and therefore helping to maximise the service life of the asset.

A useful way of comparing the effectiveness of a Slurry surfacing, or other maintenance work, is to express it in terms of a ‘cost life index’. This is the cost per square metre of the work divided by the satisfactory life in years. It provides a measure of the “value for money” which the highway authority is achieving. A low ‘cost life index’ and “high value for money” is the result of high-quality work. Slurry Surfacing provide a low cost life index compared to conventional surfacings.

The purpose of this Code is to identify the important aspects of the process, and to refer to other documents relating to good Slurry surfacing practice and so give practical guidance on achieving high quality.

Slurry surfacing products are regulated by BSEN 12273:2008 which came into effect in UK in January 2011. In accordance with the Construction Products Regulations: 2011 (CPR), CE marking is a mandatory requirement from 1st July 2013.

1.2 Health, Safety and Environment

All those involved in preparing and executing Slurry surfacing operations have a legal duty of care for the health and safety both of the operatives carrying out the works, and those who come into contact with the operation whilst in progress and during aftercare.

The planning and organising for health, safety and environmental issues must commence as soon as a Slurry surfacing programme is envisaged. The Construction Design and Management Regulations 2007 will apply to most Slurry surfacing operations and therefore clients are urged to follow closely the advice in the relevant Approved Code of Practice as they have the responsibility under the new version of the Regulations for initiating the framework for safe working practices. This will enable the CDM Co-ordinator and Principal Contractor to plan and prepare the information and documentation necessary to ensure the specific hazards are identified on the various sites and the level of risk that is envisaged. This must take into account the nature of the site, the materials to be used, the traffic management requirements and any special health, safety and environment issues that have become evident during the pre-tender stage, (ensure the right information is provided to the right people at the right time). The client should employ a competent contractor. It is recommended that the simplest way for a client to achieve this is to select at tender stage contractors registered to National Highways Sector Scheme 13. Once the contractors have been selected, the pre-construction information
contained in the tender document should be detailed enough for the prospective contractors to take account of the health, safety and environment issues in their tender submission.

On the appointment of the Principal Contractor to carry out the Slurry surfacing operations, it will be his duty to prepare a detailed Health and Safety Plan for that particular contract or works from the Pre-construction information supplied by the Client, Designers and CDM-Coordinator. This must itemise the methods to be employed to overcome the specifically identified hazards and risk reduction measures that will be in force on this contract. They must also ensure adequate welfare is provided from the start of the contract.

Once the works commence the Principal Contractor has the control of health, safety and environment matters but liaison with the client, police and the general public on issues of congestion, diversions or closures must be ongoing throughout the contract.

The Principal Contractor has additional duties under other legislation to look after the health and safety not only of his own employees but of other persons who work alongside them and also of the passing public. Written specific risk assessments must be prepared which can be used to identify control measures for both physical and chemical hazards. The measures must form the Contractor’s safe systems of work which enhance the safe behaviour of the workforce as well as protect the general public during the various stages of the works. These measures must be communicated to all involved in the project.

Account must also be taken of environmental factors with pollution from fumes, noise and dust being the main concern during the work phase. Disposal of waste and protection from spillage and contamination are other considerations when looking at the overall Slurry surfacing activity.

1.3 Training

The design of Slurry surfacing and its execution is dependent on a wide range of factors and close attention to detail.

The National Highway Sector Scheme 13 now defines the minimum qualifications required for all personnel involved in the design, supervision and installation of Slurry surfacing. It is the Association’s view that a competent qualified workforce makes a fundamental contribution to achieving high quality durable Slurry surfacing. The RSTA runs regular training courses, details of which can be obtained from the RSTA website www.rsta-uk.org/calendar.

Operatives should hold NVQ level 2 and Supervisors NVQ level 3 qualifications plus CSCS cards. Supervisors shall attend the RSTA Training course on Slurry surfacing every 5 years and obtain a silver certificate as evidence of maintained competency.

1.4 Quality Assurance.

The Road Surface Treatment Association continues its commitment to quality assurance and has been instrumental in producing the Sector Scheme for Slurry surfacing, which is number 13 in the series of Sector Scheme Documents.

The Sector Scheme Document, which was first published in 2003, is available on the
The RSTA, from whom further details are available, currently chairs the National Highway Sector Scheme 13 Technical Advisory Committee.

The quality requirements and performance categories for Slurry surfacings are contained within PD6689:2009.

The implementation of a Quality System known as Factory Production Control (FPC) is a mandatory requirement of EN 12273 and CE marking.

1.5 Planning and Co-ordination

Careful and detailed planning before work commences is an essential element of successful Slurry surfacing. There should be close co-ordination between contractors and their clients at every stage, commencing with a pre-works meeting, the purpose of which is to ensure total understanding of the way that the programme will proceed.

It is in the interests of both contractors and clients that the programme of works flows smoothly from site to site without the need to travel many miles for the purpose of treating small areas of road.

2 DEFINING THE SITE AND ITS CHARACTERISTICS

Before any design, planning or Slurry surfacing is undertaken, it is important to identify the lengths of road to be treated and to draw up a schedule. A clearly understandable system such as a line, arrow and job number on the road surface is recommended.

Having identified the sections of road for treatment, the Client or his representative should determine the need for weed killing or raising ironwork and also determine whether the existing road markings/studs are appropriate for reinstatement after the surfacing or whether any revised layouts are necessary. This should reduce the potential for delays once the Contractor has been appointed.

If weed killing is required then sufficient time must be allowed for die back of the weeds to occur (typically 10 days) otherwise they will reappear through the slurry surfacing.

3 DETERMINING THE SPECIFICATION

3.1 The selection of the right type of Slurry surfacing, nominal layer thickness and rate of spread of material is as important as the design of other engineering works. Each site must be considered in the light of its unique characteristics, including the nature of surface, geography, volume and speed of commercial and other traffic using the section of road. The contractor will select the rate of spread and thickness based on his Type Approval Installation Trial (TAIT) and experience in accordance with the requirements of PD6689:2009.

3.2 Particular attention to the design is important to ensure the right treatment is applied according to the site parameters.
3.3 In recent years, there has been a move towards "End Performance Specifications". End Performance Specifications transfer the responsibility for the design of the Slurry surfacing to the selected contractor who is also responsible for the execution of the treatment and generally guarantees the treatment for a specified period of time. With CE Marking now mandatory it is envisaged that end performance specifications will become the norm however local authorities may continue to use locally sourced materials in consultation with the specialist contractor.

3.4 Guidance on Slurry surfacing can be found within Clause NG918 in MCHW Vol.2, available on line at http://www.dft.gov.uk/ha/standards/mchw/vol2/ and PD6689.

4 SITE INFORMATION

It is important that the person in charge of Slurry surfacing operations on site fully understands the type and extent of the work required. One way of achieving this is the preparation of a schedule and map indicating the sections of road to be treated, the length and average width of each section, the area to be treated, the type of binder, rate of spread of material, nominal layer thickness any bond coat requirements and location of material storage area – The Information Sheet is usually provided following an assessment by either the client or the contractor. This information can also be provided by specifiers in Appendix 7/7 (MCHW Vol 2 NG700 Sample Appendix 7/7 - see http://www.dft.gov.uk/ha/standards/mchw/vol2/pdfs/series_ng_0700.pdf

It is recommended that the client and contractor undertake a joint walk over of the site to agree what is to be done in detail. This ensures all parties know exactly what should happen and when. This is the contractors opportunity to agree or not to carry out the work as specified. Issues that may arise are illustrated below;

- The contractor cannot do the works as planned
 - The planned TM is not safe/inappropriate
 - The timescale is too short
 - Access is impossible
- The contractor cannot achieve the specification
 - The weather forecast is too poor
 - The substrate is too soft
 - The substrate is too poor a profile without planing
 - The layer thickness is wrong for the laid thickness
- The contractor cannot offer the guarantee required
 - The design is obviously not adequate for the site condition
 » e.g. a single layer of surfacing on a cracked base

The client’s representative and contractor should also consider whether the site has the potential for the occurrence for prolonged periods of standing water (submersion) which may affect the suitability of the treatment for the site and product durability.

The rate of spread in kg/m² and applied thickness is determined by the contractor.
5 PLANNING THE EXECUTION OF THE WORK

In addition to compiling the site information, the contractor’s representative supervising the treatment may need to decide which size of Slurry surfacing machine to use and where longitudinal joints are to be located.

Unless they are made with proper care, joints can become weak points on any treatment. For that reason, the number of joints made should be kept to a minimum and located to minimise water retention on the finished surface.

5.1 At the design stage due to plant size and equipment, consideration must be taken to achieve minimum safety zones according to Traffic Signs Manual Chapter 8 and a risk assessment approach must be adopted.

5.2 Temporary diversions should not be introduced casually and will involve consultations between contractors and the highway authority. Refer to RSTA/ADEPT Code of Practice for Signing at Slurry surfacing Sites (under development). Legal processes often need to be followed to arrange closures or diversions and these can take up to 13 weeks.

5.3 Poor planning can result in low daily output, increased costs and public criticism. Supervisory staff will give proper consideration to the order in which various sections are treated, the number of vehicle movements transporting materials to the site. Leafleting the public and street notification/signing in advance will help to inform the public of intended works and hopefully reduce public complaints.

6 CONTROLLING MATERIAL INSTALLATION

The client usually stipulates a nominal layer thickness and the contractor uses his experience of mix design and machine application to achieve the desired layer thickness by identifying the nominal aggregate size required in the mix design.

Slurry surfacing machines are calibrated for aggregate and binder flow rates and admixture addition to ensure material blend consistency as stipulated in Factory Production Control (FPC). The control of layer thickness and surface finish is achieved by using an adjustable screed box.

The areas to which Slurry surfacing is to be applied shall be clearly defined by the Customer’s Engineer (the Purchaser) prior to commencement of the installation work on-site.

The surface to be treated should be properly swept and in a clean condition prior to Slurry surfacing installation work commencing. The contractor will use his experience to use whatever means deemed necessary to ensure adequate surface preparation prior to installation to ensure good adhesion. The contractor may also consider the need for a bond coat if deemed necessary.

In advance of Slurry surfacing on carriageways all temporary materials, e.g. deferred set macadam containing soft binders, must be removed and replaced with appropriate permanent asphalt materials as specified by the Customer’s Engineer (the Purchaser).
These can include hotmix asphalt or permanent cold lay surfacing materials (PCSMs) carrying third party product approvals. On footways it is not usually necessary to remove temporary materials prior to overlaying with Slurry surfacing.

Existing extruded/screed thermoplastic road marking thickness should be checked. Significant extruded/screed thermoplastic thickness >3mm will be reflected in the finished surface profile and could be a hazard to road users. Mechanical removal is recommended to ensure even thickness and ride quality of the Slurry surfacing. In addition Slurry surfacings do not adhere well to thermoplastic road marking materials and as time goes by the thermoplastic will reappear. Removal of road markings/lines is recommended. Road studs must be removed.

Ironwork in the carriageway should be masked and the location noted. Ironwork should be raised after the new Slurry surfacing has been installed on carriageways as this avoids damaging the strike plate of the laying box. However ironwork is raised in advance of Slurry surfacing on footways. A joint inspection may be required to identify the items that require adjustment. The client’s representative determines the extent to which iron work is raised.

Where the site to be treated is showing surface irregularities Slurry surfacing can be used to regulate where necessary. Transverse regulating and carriageway shaping can be carried out over the length of the site as directed or agreed by the Customer’s Engineer (the Purchaser). Depths in excess of 10-20mm should be removed by regulating/shaping with a layer of Slurry Surfacing before placing the final Slurry surfacing surface course. This final Slurry surfacing surface course work shall not be overlaid until the contractor is satisfied that sufficient cohesive strength of the regulating/shaping layer has occurred.

The finished surface texture and appearance of Slurry surfacing is largely dependent on the mixture design and in particular the aggregate gradation and method of installation. Immediately after laying it is unlikely to have the same appearance as hot mix asphalt or surface dressing but this is not necessarily a defect. The appearance will also change over time with trafficking. Guidance on what constitutes a defect is given in PD 6689. However this has occasionally led to a difference of opinion between client and installer. If the customer is inexperienced with Slurry surfacing a site visit to a previous installation may prove beneficial.

Weather Conditions

The contractors quality plan will outline the range of weather conditions under which his Slurry Surfacing can be installed satisfactorily. There is also guidance given in the MCHW Specification for Highway Works Clause 918.

Installation shall only be carried out at an average road surface temperature and air temperature of 4°C and rising. There is no upper air or surface temperature limit when installing Slurry surfacing. Elevated temperatures during summer months actually help the Slurry surfacing material to dry out quickly and develop rapid cohesive strength.
The Slurry surfacing should not be installed when the relative humidity is >80% as effective break of the emulsion will not occur.

For time critical or traffic management dependent installations of the Slurry surfacing out-with the surface conditions as noted above artificial controlled drying of substrate and/or certain constituents of the Slurry surfacing may be considered. Specialist requirements should be agreed between the Installer and the Customer (the purchaser) in advance on a project specific basis.

Ambient road and surface temperatures together with relative humidity are recorded daily and per individual Slurry surfacing site and if the weather is variable during the installation process. The ambient and road surface temperatures together with relative humidity are used to ensure the appropriate chemical retarding agent and water doses are applied for the prevailing conditions to ensure effective break of the bitumen emulsion. The ambient weather conditions are recorded on the Laying Record.

Installation of the Slurry surfacing is not carried out during rain affected conditions. The Slurry surfacing can be installed on a damp substrate subject to the appropriate ambient and road surface temperatures together with relative humidity criteria being met.

If a section of the Slurry surfacing is affected by inclement weather conditions during installation then the Customer’s Engineer (the Purchaser) is notified of the estimated time period required for the affected section to harden sufficiently before trafficking in the prevailing weather conditions. A joint inspection may be required to assess the affected area.

Installation on Carriageways

Slurry surfacing is manufactured on site using a dedicated and purpose built applicator, which mixes and lays the material in a continuous controlled operation.

All the materials required to produce the Slurry surfacing system are delivered and stored in appropriate transport at a convenient location close to the site. Material requisitions are raised and records are retained on the project file in accordance with the Installers Quality Control System.

System Installation Procedure:-
 a) The mixing of the materials is carried out in the pug mill on the dedicated and patented Slurry surfacing applicator.
 b) The mix constituents are added in a controlled manner to the pug mill mixer via a conveyor belt in the following sequence:
 1. Slurry surfacing conforming coarse and fine aggregates
 2. Ordinary Portland Cement filler and Lime
 3. Polymer Modified Bitumen Emulsion
 4. Potable Water
 5. Other additives

The dedicated and patented Slurry surfacing applicator has a control system that permits
the following:-

a) Aggregate to be calibrated at the start of each season at a rate of 1 tonne per minute in accordance with the applicator manufacturer’s recommendations.

b) Water is added dependent upon the water content of the aggregate and prevailing weather and temperature conditions, i.e. the colder the temperature, the less water is added.

c) Cement or Lime and fibres are calibrated at the start of each Slurry surfacing installation season to check that the correct amounts are being discharged in accordance with the applicator manufacturer’s recommendations.

d) Mixing time is approximately 30 seconds to 1 minute.

Note: BSEN12273 provides information on equipment calibration frequency.

The Slurry surfacing mix is then discharged into the Spreader Box. The Slurry surfacing mix is applied to the road as the applicator moves forward. The flow rate stays constant, however the laying speed at which the machine lays the material will depend upon the condition of the existing substrate pavement. If the existing substrate is in poor condition and open textured, then the speed at which the Slurry surfacing applicator lays the material will be reduced to ensure the Slurry surfacing material fills the texture voids in the substrate. A single layer application is usually 10 to 15 kg/m2, dependent upon substrate. Two layers of Slurry surfacing may also be used if necessary.

In normal daytime weather conditions in the UK, the Slurry surfacing tends to be laid between March through to October. The prevailing weather conditions should permit the Slurry surfacing site to be opened to normal trafficking in approximately 30mins.

System Installation Checks by the Installer

A visual check shall be carried out if the client deems the surface texture post installation is not consistent with the contractors quality plan. Common causes of uneven texture can be related to parked cars and areas treated by hand applied Slurry surfacing and these factors should be considered during the design stage. Document PD6689 (categories for defects determined by visual assessment), table 7, provides guidance with respect to acceptable surface finish.

A program of random tests such as the Pendulum Skid Test (BSEN 13036-4) and/or Volumetric Patch test BSEN 13036-1 may form part of the main contract between the Installer and the Customer (Purchaser) or may be agreed in advance with the Customer’s engineer.

PD6689 Table 9, “Frequency of testing all road types”, lists routine checks which the installer may include as part of his FPC.

Maintenance and Repair

In the event that damage occurs during the installation or during service, the system shall be assessed for defects in accordance with BS EN 12274-8.
Occasionally there can be premature 6mm aggregate loss due to inclement weather conditions occurring during the installation process or occasionally if heavy trafficking has occurred too early. An overlay of machine applied Slurry surfacing patch is recommended of not less than 10m longitudinal length and machine screed width.

Occasionally there can be frettin at a longitudinal or transverse joint with existing substrate. A hand applied Slurry surfacing screed mixture can be used for areas up to 150mm wide in a similar fashion to ironwork reinstatements following main carriageway Slurry surfacing installation.

7 JOINTS

Joints, both longitudinal and transverse, are potential points of weakness. Longitudinal joints should not therefore be located where they will coincide with the wheel tracks of vehicles. Consequently, the best position for a joint is on the centre line of a road or on the line separating adjacent traffic lanes. Refer to requirements in Clause 918.18 and 918.19 and BS EN 12274-8 which shows joint faults.

8 TRAFFIC MANAGEMENT

In undertaking Slurry surfacing the needs of road users must be considered at all stages. The safety of operatives and the public whether on foot or in motor vehicles is paramount.

It must always be remembered that the needs of any site should be considered as unique and each Slurry surfacing crew should contain properly trained personnel. For specific sites, a proper risk assessment should be undertaken by an appropriately trained person and acted upon before Slurry surfacing equipment and operatives are dispatched to the site. At some sites, this will require discussion between the contractor and representatives of the highway authority at the pre-contract stage. Where this is the case, the agreement reached between the parties should be passed on to the person controlling site operations. The National Highway Sector Scheme 12D document details these requirements.

The correct selection of traffic management system to be adopted is important. The public should not be unduly inconvenienced by detours or long delays, or the reputation of Slurry surfacing as an efficient and economic process is put at risk. When considering traffic management arrangements, the following factors need to be taken into account:

(a) Traffic flow data

This will include such factors as high peak-hour flows, high percentage of HGV's etc.

(b) Road layout and junctions

This will identify the type of road under consideration e.g. whether it is a 7.3 metre wide single carriageway principal road with no major junctions, or a narrow country lane.

(c) Type of control
The information from (a) and (b) above will give the input necessary to decide the general type of traffic control required, e.g. restricted hours of working, maximum working lengths, availability of alternative routes, level of advance publicity needed, etc. Narrow country lanes, for instance, may need to be temporarily closed or a warning of delays may need to be given.

(d) Specification

Both the specification for the work and the job sheet for the site should state any exceptional requirements for dealing with traffic.

(e) Traffic regulation orders

Legal processes, such as allowing the closure of a road or imposing mandatory speed limits, need to be arranged by the highway authority well in advance of the works and up to at least 13 week’s notice may be required in some circumstances.

It is recommended that Clients consider initiating the process at the earliest stage of the planning process.

(f) Publicity

Road users do not like being delayed and will take alternative routes if they are given adequate information. As Slurry surfacing works are normally of a short duration and dependent upon favourable weather forecasts, it is difficult to predict accurately when traffic flow at any particular site is likely to be affected. Nevertheless, principal roads carry many thousands of vehicles per day. It is essential therefore that every possible method should be utilised to inform the road user that a site is to be affected. Press releases to local papers, district and parish councils, local radio etc can all help. The most effective methods are

1) The display of information boards at each site saying, for example, that Slurry surfacing is to be carried out and when.

2) The distribution of letters to all dwellings and premises and also attached to all vehicles (loosely under windscreen wipers) detailing what works are to take place and when.

In addition, emergency services, bus operators and any other organisation likely to be affected by work at a particular site should be notified in advance.

(g) Traffic control and signing

For the safety of drivers, pedestrians and operatives, traffic passing over newly treated roads, or alongside Slurry surfacing that is in progress, must be properly controlled. Such control includes adequate advance warning of the works, regular reminders throughout the site of the risk of loose chippings and the proper management of vehicles by the use of traffic lanes. Some instructions such as "stop" and "give way", are indicated both by carriageway markings and by mounted signs. When these carriageway markings are covered by Slurry surfacing, it is important to replace them as soon as possible or to provide some temporary signs during the period between the covering of the markings and
their permanent replacement. This is particularly important at junctions with high-speed roads.

The careful control of traffic and the maintenance of speeds of 20 mph or less over newly completed treatments is necessary in order to give the material time to 'set' or break'.

Where one-way traffic is operated using stop and go signs, the operators of these signs should be appropriately trained, be in radio communication with one another and one of the operators should be nominated as being in overall control of the traffic flow arrangements. On roads where it is not possible to provide the desirable safety zone between Slurry surfacing plant/operatives and moving traffic, the speed of traffic past the works should be restricted to a maximum of 10 mph.

Where road junctions are treated, which result in the obliteration of "stop" and "give way" markings on the carriageway, the appropriate warning signs should be provided (sign 7012 - the Traffic Signs Regulations and General Directions 2002).

Some highway authorities use mandatory speed limits to control traffic speeds when Slurry surfacing main roads. If the road in question is a trunk road the consent of the Regional Director's Office of the Highways Agency is required. In other cases, local highway authorities have powers under Section 14 of the Road Traffic Regulation Act 1984. Where local authorities wish to use these powers they should first be discussed with the Chief Constable who will have the task of enforcing any orders that are made. Highway authorities may then "give notice" of a temporary speed limit on a list of roads, usually main roads or roads where traffic speeds are unusually high. The usual procedure is for the council to give their engineer authority, at the appropriate time, to apply the orders that have been approved. Once the order has been applied it may remain in force for a maximum of fourteen days, which is normally far longer than is necessary for Slurry surfacing operations. The speed limit selected is usually 20 mph.

Although the use of mandatory speed limits may be helpful in exceptional circumstances experience suggests that controlling traffic speeds by reducing lane widths and the creation of convoys is likely to prove more effective.

Not only is it important that signs are placed in accordance with the principles outlined in Chapter 8 of the Traffic Signs Manual, it is also important that a safe system of work is operated, to ensure the safety of the operators when placing signs.

(h) Signs

Unless the DfT have given approval in writing to the use of a sign not included in the Traffic Sign Regulations and General Directions and subsequent amendments, only signs approved by Statutory Instrument should be used. Where such signs are used, they should be provided in addition to rather than instead of approved signs. Should a member of the travelling public make a claim against the contractor and/or the highway authority, the use of the correct signs located in the correct positions is likely to be taken into account by the courts.
9 ROAD SURFACE PREPARATION

The Quality Plan describes the acceptable substrate conditions for application of Slurry surfacing in accordance with BSEN 12273. Any necessary remedial works to the road surface and structure shall be carried out and completed either prior to the commencement of works, or as part of the Contract, as agreed by the Overseeing Organisation, to enable the surface to conform with these requirements. Sweeping/cleaning, pre-patching and removal of organic matter from the road surface will need to be considered pre-works.

10 BINDERS

Binders used for Slurry surfacing are predominantly cationic bituminous emulsions in nature and comply with the requirements of BS EN 13808. Polymer modified binders are now used predominantly in Microsurfacing on Carriageways particularly if the contractor feels he needs extra toughness to cope with traffic stresses.

All emulsion binders used in Slurry Surfacing must be CE marked.

11 AGGREGATES

The designer of the Slurry surfacing shall select suitable aggregate sources and sizes to ensure installed product meets the requirements of the contract for the site with respect to defects as demonstrated by the TAIT and of the required polished stone value.

12 ROLLERS AND ROLLING

Rolling is not normally necessary. The Contractors Quality Plan should state whether rolling is required and the type of roller required for that product laid on that particular class of road to ensure a durable product.

13 SURFACE PREPARATION SWEEPERS AND SWEEPING

Road preparation can be a problem leading to some de-bonding failures. Mechanical sweepers are used to clean the road before slurry surfacing is carried out. In extreme conditions such as heavy soiling additional measures may be required such as machine pressure washing. Specialist contractors will use their expertise to determine if any other measures need to be taken to ensure good adhesion of the Slurry Surfacing to the prepared substrate e.g. use of a bond coat.

14 ALL PLANT

The noise levels of all plant should be ascertained from manufacturers or suppliers. If they are not available, the user must take measurements themselves and ensure that all operators are provided with the correct hearing protection, where necessary. All plant and vehicles should be adequately maintained with regular inspection reports available.
15 METHOD OF WORKING

On single carriageway trunk and principal roads, Slurry surfacing falls into the category of "mobile works". Under this type of working, traffic will be controlled by the use of stop and go signs as described in section 8. The length subjected to this operation should be kept as short as possible consistent with safety requirements. Experience suggests that the safest method of operation is to treat one half of the road for the total length of the section. Traffic should be controlled to allow all plant and equipment to turn safely and position itself to treat the second half of the road.

Most contractors prefer to operate in the same direction as normal traffic movement. The decision on the direction of travel to be adopted will depend upon such factors as the speed of traffic and the visibility available. The direction of operation selected should form part of the risk assessment for each particular section of road.

Where the whole width is not to be treated in one pass and one way traffic operation past the Slurry surfacing is contemplated, it is essential to ensure that the width of road available to passing traffic is not less than the desirable minimum of 3.25 metres or the absolute minimum of 3 metres set out in paragraph 2.5.1.6 of chapter 8 of the Traffic Signs Manual. Where these widths are not available, the interests of safety suggest that it is preferable to divert traffic away from the road, subject to a risk assessment and length of the diversion that would be necessary. Where for this purpose a road is to be temporarily closed to allow Slurry surfacing operations to be carried out safely, proper contingency arrangements must be made to allow for the passage of emergency vehicles.

Additional advice is given in the RSTA/ADEPT Code of Practice – Traffic Management of Slurry surfacing (under development).

This covers single carriageway roads:

a) Over 7.3 m wide
b) 6.0m – 7.3m wide
c) Under 6.0m
d) After completion of treatment prior to final sweeping and relining

16 AFTERCARE

A good Slurry surfacing, using all the right materials, equipment and procedure, is easily spoilt or totally ruined by lack of aftercare. Once a Slurry surfacing has settled down and stabilised it can cope with traffic stresses.

Before dealing specifically with the protection of Slurry surfacing and with aftercare and sweeping, it is worth noting a few elements of good housekeeping, which contribute to the creation of a successful treatment.

1 All masking material should be removed as soon as possible after completion and before the road is opened to uncontrolled traffic. Once lifted, the masking material should be removed from the site for disposal.
2 Any accidental spillage of material onto parts of the carriageway which are not being
treated or onto the kerb face, should be dealt with immediately. The longer they are
left the more difficult it is to remove them.

The contractors quality plan outlines the post sweeping regime. Care should be taken not
to disturb new treatments, although the risk of disturbance is, in practice, limited to a
period of a few hours after the work has been completed.

Traffic control is also a vital element of aftercare. On main road sites and points of
particular stress, it is essential that traffic control should remain in place to keep vehicle
speeds low until such time as the treatment has developed adequate cohesive strength.

17 HAND APPLICATION OF SLURRY SURFACING

In many instances, the machine application of Slurry surfacings is not practical, although
small machines for use on footways and the like are available.

However, footways, cycle ways, small residential estate roads, car parking areas and other
areas not readily accessible by machine can be successfully treated by the hand
application of these materials.

In many instances, the criteria and principles for machine application, set out within this
document are applicable.

Typically, small, self-propelled mixer units, capable of batch mixing up to 250 kg are
utilised to facilitate these works. As these mixer units do not have metered feed
capabilities for the various material constituents, it is imperative that trained operatives are
utilised to ensure that the material ingredients are correctly proportioned, thereby ensuring
consistency of the Slurry surfacing material leaving the mixer unit.

In many instances, particularly on rural footpaths, the degree of preparatory work
necessary prior to the application of the Slurry surfacing, is greater than for machine
applied applications. Weed spraying, cutting back of overgrown verges, pressure washing
to remove ingrained detritus and the masking of kerbs, back edgings, private driveways
and all ironwork located within the footpath are all operations typically carried out.

Generally, the bitumen emulsion, aggregates, fillers and chemical additives used are the
same as those utilised for machine applications. However, the Polished Stone Value
(PSV) of the aggregate is not as critical for footway works and therefore there is an
opportunity to use less expensive aggregates. Coloured aggregates and pigmented
bitumen emulsions can be used for delineation or aesthetic purposes.

Because of the greater interface with pedestrians when working on footways and cycle
ways, pedestrian management takes on greater significance and it is essential that all
affected residents be given sufficient advance notification of the works and that provision
be made to ensure that access problems can be overcome until such time as the material
has sufficiently hardened. Safe pedestrian movement throughout the work area is of
paramount importance.
It is worth noting that the drying time (i.e. the time before pedestrians or vehicular traffic can be allowed to use the new surface without causing damage to it), can be longer than for machine applications. This is due to the need to slow down the chemical reaction to ensure that operatives have sufficient time to spread and lay the material, neatly, by hand. The surface finish is agreed between the engineer and installer. Slurry surfacing material brush finished perpendicular to the kerb provides a more consistent finish and minimises the risk of retaining water.

18 TRAINING AND QUALITY ASSURANCE

It is strongly recommended that Slurry surfacing should only be installed by operatives who have an appropriate CSCS skill card underpinned by NVQ in accordance with requirements in National Highways sector Scheme 13 available from www.ukas.com. In addition supervisors should demonstrate they are maintaining competency by attending an appropriate industry accredited training course every 5 years. The RSTA run training courses throughout the year on Slurry surfacing, details of all courses at www.rsta-uk.org/calendar.htm.

Membership of the Road Surface Treatment Association is available to contractors who have third party quality assurance (BSEN ISO 9001) for the type of Slurry surfacing work they undertake.

It is now a legal requirement for contractors to have a CE mark for their Slurry Surfacing products. CE marking requires contractors to operate a Factory Production Control system in accordance with the requirements contained with BS EN 12273. Public bodies are now required to purchase products carrying a CE mark.

19 END-PRODUCT SPECIFICATION CONTRACTS

In contracts using the Specification for Highway Works Clause 918 (End Performance Specification), the design of the Slurry surfacing is the responsibility of the contractor. The client will provide details of road categories, PSV requirements and traffic management restrictions to enable the contractor to select the correct materials and determine rates of spread. Under these types of contract the contractor is required to demonstrate the suitability of the selected system through the CE mark and Declaration of Performance.

Clause 918 restricts Slurry Surfacings to use on roads carrying less than 250 cvd. If the client requires heavier trafficked sites to be treated the contractor must provide evidence of performance through third party product approvals. Local authorities may adopt different site criteria for the use of Slurry Surfacings and may choose to use such treatments on more heavily trafficked sites.

The guarantee period under Clause 918 for Microsurfacing is normally 2 years for trunk roads including motorways, heavily trafficked or high stress roads and one year for other roads. Local highway Authorities normally adopt similar requirements.
20 TYPE APPROVAL INSTALLATION TRIAL (TAIT)

The TAIT demonstrates the product performance and durability (macrotecture and visual assessment demonstrated after one year) and the capability of the Contractor. The TAIT Certificate will be the basis for the contractor to achieve CE marking and provide the Client with a declaration of performance providing assurance that the product meets the requirements in BSEN12273.

The Contractor will have carried out end performance Type Approval Installation Trials (TAIT) in accordance with BS EN 12273 as required by Clause 918 of the Specification for Highway Works (MCHW1) on the type of Slurry surfacing that is proposed to be used at approximately the traffic levels and site difficulty of the site in question. Normally, the trial will have been carried out on a site as described below:

- Within one traffic category (above or below) of the actual site; and
- Within one investigatory level (IL) of the actual site, as described in HD 36/06 (DMRB 7.5.1).
APPENDIX A

CHECK LISTS

Pre-Contract Checklist

1. Has the contractor all relevant site information i.e. location of schools, bus route, market days, events etc?

2. Have all the required notifications for Traffic Management been put in place?

3. Have TM drawings been drafted?

4. What type of traffic control is to be operated and is there enough labour to carry out the works in a safe and proper manner?

5. Have all labour received the appropriate training?

6. Has the correct and adequate plant been allocated as required under the contract?

7. Are the materials specified under the contract available when required?

8. Has the patching works been procured?

Site Checklist

1. Has the road been swept?

2. Is the pre-patching complete and satisfactory?

3. Is the road clear of parked vehicles or any other obstructions?

4. Has the works been publicised?

5. Are the correct signs in place?

6. Has all necessary street furniture been masked and locations marked?

7. Have all Thermoplastic materials (above 3mm) and cats eyes been removed?

8. Are the operatives all present and correct and wearing the relevant Personal Protection Equipment?

9. Is all the plant calibrated and in safe working order?

10. Are there enough materials available, in good condition, at the correct storage area?

11. Is the required rate of spread of Slurry surfacing known?

12. Are the weather conditions appropriate to commence work i.e. check forecast daily for high humidity levels, air temperatures and rain?
13 Is the planned method of operation safe, both to the operatives and the public?

14 What type of traffic control is to be implemented and does everybody understand the method of operation?

15 Have you planned the work with the minimum number of longitudinal joints in the correct place relative to the wheel tracks?

16 Has all of the ironwork been identified that requires adjustment? Has any appropriate aftercare been arranged i.e. trafficking under restricted conditions and sweeping?

Post Contract Checklist.

1 Have arrangements been made for post-contract inspections and any required further sweeping?

2 Are all temporary signs being maintained in a satisfactory condition and placement and removed when required?

3 Is the required contract information being collected and documented?

4 Have arrangements been made for line and stud replacement?

5 Are re-inspection arrangements clear and agreed?

6 Has all ironwork been treated accordingly?
APPENDIX B

GLOSSARY OF TERMS

ADEPT

Association of Directors of Environment, Economy, Planning and Transport, previously known as the County Surveyors Society (CSS).

ADHESION

The property by means of which a binder sticks to the surface of a solid body, e.g. the road or chippings.

AGGREGATES

Aggregate from mineral sources which has been subjected to nothing more than mechanical processing and which has a particular grading.

AGGREGATES STORAGE AREA

A suitable hard standing for storing graded aggregate.

APPLICATOR

A purpose built Slurry or Microsurfacing machine.

BINDER

Material serving to coat the particles of an aggregate and to assure its cohesion. The binder component of Slurry surfacing is a bituminous emulsion which may be modified with polymer or other additives.

BINDER CONTENT

Difference between 100% and the percentage water content determined in accordance with BS EN 1428. (BS434-2).

BITUMEN

Virtually in-volatile, adhesive and waterproofing material derived from crude petroleum, or present in natural asphalt, which is completely or nearly completely soluble in toluene, and very viscous or nearly solid at ambient temperatures.

BITUMEN - MODIFIED

Bituminous binder whose rheological properties have been modified during manufacture by the use of one or more chemical agents. In this context, "chemical agent" includes natural rubber and synthetic polymers but not sulphur and certain organo-metallic compounds, oxygen or oxidation "catalysts" such as ferric chloride, phosphoric acid and phosphorus pentoxide. Fibres and inorganic powders ("fillers") are not considered to be
bitumen modifiers. In Slurry surfacing modified bitumens are employed in the form of emulsions.

BITUMEN – PAVING GRADE

Bitumen used to coat mineral aggregate mainly used in the construction and maintenance of paved surfaces and hydraulic works.

BITUMEN– POLYMER MODIFIED

Modified bitumen in which the modifier used is one or more organic polymers.

BITUMEN – EMULSION

Liquid product in which a substantial amount of bitumen is suspended in a finely divided condition in an aqueous medium by means of one or more suitable emulsifying agents.

BOND

The adhesion between the Slurry surfacing material and the underlying substrate.

BREAK (EMULSION)

The coagulation of the dispersed bituminous phase of an emulsion when in contact with mineral aggregate.

BSI

British Standards Institution.

BSEN 13808

A Framework product standard for specifying cationic road emulsions.

BSEN 13043

European Product Standard for Aggregates for bituminous mixtures and surface treatments for roads, airfields and other trafficked areas.

BSEN 12273

The European Product Standard for Slurry surfacing Requirements.

CATIONIC BITUMEN EMULSION

Emulsion in which the cation of the emulsifier is at the interface with the bitumen particle that is positively charged and in which the aqueous phase is normally acid.

CDM

The Construction (Design and Management) Regulations 2007 which place duties on clients, designers and contractors in relation to management arrangements and practical measures for construction projects.
CE MARKING

The CE marking (also known as CE mark) is a mandatory conformance mark on many products placed on the single market in the European Economic Area (EEA). The CE marking certifies that a product has met EU consumer safety, health or environmental requirements.

C E N

The European Committee for Standardization or Comité Européen de Normalisation (CEN), is a non-profit organisation whose mission is to foster the European economy in global trading, the welfare of European citizens and the environment by providing an efficient infrastructure to interested parties for the development, maintenance and distribution of coherent sets of standards and specifications.

CLAUSE 918

A clause within the MANUAL OF CONTRACT DOCUMENTS FOR HIGHWAY WORKS VOLUME 1 SPECIFICATION FOR HIGHWAY WORKS SERIES 900, Road pavements – bituminous bound materials, that specifies the use of Slurry surfacing incorporating Microsurfacing.

CLAUSE 942

A clause within the MANUAL OF CONTRACT DOCUMENTS FOR HIGHWAY WORKS VOLUME 1 SPECIFICATION FOR HIGHWAY WORKS SERIES 900, Road pavements – bituminous bound materials, that specifies the use of Thin Surface Course Systems.

COST LIFE INDEX

The cost (in this case of a Slurry surfacing) expressed as the cost per square metre divided by the service life.

CPR

Construction Products Regulations.

DEFERRED MATERIAL

A Slurry mixture which has been treated with Dope to delay the rate of set.

DfT

Department for Transport.

DOPE

A liquid chemical additive, usually an emulsifier or surfactant, which is added to the Slurry material during mixing on site to retard the rate at which the mixture sets to aid workability and ease of material placement.
DURABILITY

Ability of a product to maintain its required performance, under the influence of foreseeable actions, for a reasonable economic working life.

END PERFORMANCE SPECIFICATION

A level of in service performance specified by the contract document based on the performance categories contained within BSEN 12273 and PD6689.

FACTORY PRODUCTION CONTROL (FPC)

Permanent internal control of production exercised by the producer when all the elements, requirements and provisions adopted by the producer are documented in a systematic manner in the form of written policies and procedures.

FIBRES

Fibres usually manufactured from polypropylene which are added into the Slurry surfacing or Micro asphalt mixture during mixing on site to reinforce the product when fully cured for enhanced flexural strength.

HARDENED

A term used to describe a Slurry surfacing where the surface has stabilised to a hard condition ready for overlay or trafficking.

JOINTS

Longitudinal or horizontal lengths along or across the pavement surface where individual layers of Slurry surfacing or Microsurfacing meet or overlap.

LAYING RECORD

A documented record providing details of the Slurry surfacing material laid.

MASK

An adhesive barrier tape or other similar material used to cover ironwork, etc to prevent contact with the Slurry surfacing during installation such that after removal these objects remain free from Slurry surfacing or binder and in full working order.

MICRO-ASPHALT

Alternative term often used to describe Microsurfacing.

MIX DESIGN

A laboratory process for determining the optimum combination of Slurry surfacing and Microsurfacing mixture components necessary to achieve the desired level of in service performance.
NVQ

National Vocational Qualifications (NVQ’s) are work based awards in England, Wales and N.Ireland that are achieved through assessment and training. In Scotland they are known as Scottish Vocational Qualification (SVQ).

To achieve an NVQ, candidates must prove that they have the ability (competence) to carry out their job to the required standard. NVQs are based on National Occupational Standards that describe ‘competencies’ expected in any given job role. Typically, candidates will work towards an NVQ that reflects their role in a paid or voluntary position. For example someone working in an admin office role may take an NVQ in Business and Administration. There are five levels of NVQ ranging from Level 1, which focuses on basic work activities, to Level 5 for senior management.

PAVING MACHINE

Purpose built vehicle used for laying Microsurfacing with in-built mixer and able to carry all mixture components.

PD6689

Public Document 6689 provides guidance on how to use BS EN 12273 to specify Slurry surfacings and Microsurfacings in the UK.

POLISHED STONE VALUE (PSV)

A relative measure of the extent to which different types of aggregate in the surface course will polish under traffic.

PTR

An abbreviation for pneumatic-tyred roller sometimes required to compact Microsurfacings to achieve a denser more durable finish.

PUG MILL

Purpose built mixing equipment for preparing a mixture of Slurry surfacing and Micro Surfacing.

QA

An abbreviation for Quality Assurance.

QUALITY ASSURANCE

Quality assurance, or QA for short, is the systematic monitoring and evaluation of the various aspects of a Slurry surfacing operation to maximize the probability that minimum standards of quality are being attained by the production process.

Registration to BSEN ISO 9001 given to a contractor by a certification body indicates minimum standards are being attained
REGULATING

Re-profiling the existing road surface prior to treating with Slurry surfacing to remove any unacceptable defects such as ruts or potholes.

ROLLER

Mobile plant/equipment used to compact layers of Micro-asphalt.

RSTA

The Road Surface Treatments Association is the trade body representing the road surface treatments industry. www.rsta-uk.org.

SCREED MIXTURE

A Slurry mixture of aggregates, bituminous emulsion, water and additives, which is mixed and laid in-place by flowing through a levelling screed.

SECTOR SCHEME

National Highway Sector Schemes are bespoke management schemes within an ISO9001:2008 framework. Each scheme is managed by a separate technical advisory committee made up of representatives from across the sector, regulated by UKAS.

SLURRY SURFACING

A mixed material comprising graded aggregates, water, emulsion binder, dope and cement.

SRV

Skid Resistance Value.

TAIT

Type Approval Installation Trial (TAIT) - synonymous with Initial Type Test (ITT) which demonstrates that the characteristics of the Slurry surfaces complies with the declared characteristics according to the European Standard BS EN12273. The TAIT consists of a defined section where Slurry surfacing has been installed using Factory Production Control (FPC) and which has been submitted to performance tests after a period of one year. Detailed information is recorded to clearly identify the product, its performance and the intended uses. Also a requirement within BS.

THERMOPLASTIC

A term used to describe road markings.

TRAFFIC SIGNS MANUAL

Regulatory guidance on the use of traffic signs at mobile works. Traffic Signs Manual
Chapter 8: Traffic Safety Measures and Signs for Road Works and Temporary Situations.

UKAS

United Kingdom Accreditation Service.

VOLUMETRIC PATCH

A standard test, BS EN 13036 Part 1, for measuring the texture depth of road surfaces (previously known as the sand patch test).

APPENDIX C

REFERENCES

- HD 24/06 Traffic assessment (DMRB 7.2.1).
- HD 28/04 Skidding resistance (DMRB 7.3.1).
- HD36/06 Surfacing material for new and maintenance construction (DMRB 7.5.1).
- HD 37/99 Bituminous surfacing materials and techniques (DMRB 7.5.2).

- Volume 1: Specification for Highway Works (MCHW 1) www.dft.gov.uk/ha/standards/mchw/vol1/

RSTA Code of Practice for Slurry surfacing incorporating Microsurfacing

BRITISH STANDARDS INSTITUTION Aggregates for bituminous mixtures and surface dressings for roads, airfields and other trafficked areas. BS EN 13043. British Standards Institution, London.

BRITISH STANDARDS INSTITUTION UK national guidance for the use of BS EN 13043 “Aggregates for bituminous mixtures and surface dressings for roads, airfields and other trafficked areas” PD6682 - 2 British Standards Institution, London.

APPENDIX D

FEEDBACK ON THIS DOCUMENT

Any observations, feedback or complaints relating to the content of this document or the process described herein should be addressed (using the form below) to:

Chief Executive
The Road Surface Treatments Association Ltd
PA158, Technology Centre, Science Park
Glaisher Drive, Wolverhampton WV10 9RU

Email: enquiries@rsta-uk.org
Tel: 01902 824325

Issue Identified:

Suggested Action:

Name:

Organization:

Address:

Contact details:

Date:
APPENDIX E

DOCUMENT CONTROL

Issue Statement

Issue 1 2011

REVISION LIST – AMENDMENTS MADE IN THIS ISSUE

<table>
<thead>
<tr>
<th>Revision</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3.2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>End Performance Contracts re-written to identify the contractor as being responsible for design and demonstrating suitability through a TAIT and needing product approval certification for use on more heavily trafficked sites.</td>
</tr>
<tr>
<td>20</td>
<td>TAIT’s - updated</td>
</tr>
<tr>
<td></td>
<td>Appendix A updated to include; the need for TM drawings and patching to have been procured.</td>
</tr>
<tr>
<td></td>
<td>Appendix A amended regarding the need to identify ironwork to be treated</td>
</tr>
<tr>
<td></td>
<td>Appendix B and C – minor updates for accuracy</td>
</tr>
<tr>
<td></td>
<td>Appendix D Feedback form included containing the new RSTA office address</td>
</tr>
<tr>
<td></td>
<td>Appendix E Document Control section included</td>
</tr>
</tbody>
</table>